Geometry CC WS 1.19 - Introduction to Rotations

Rotation is a transformation that turns a figure about a fixed point (center of rotation). Rotations can be in a clockwise or counter-clockwise direction.

Counterclockwise

Clockwise

A positive angle of rotation turns the figure in a counterclockwise direction. A negative angle of rotation turns the figure in a clockwise direction.

The angel of rotation is the number of degrees the figure rotates. Rays drawn from the center of rotation to a point and to its corresponding image form the angle of rotation.

In the diagram below T' is the image of point T after a 90° rotation about point P. Points A and M are also rotated 90°.

Opening exercise: Take the point *P*(4, 2) and rotate it as stated. Plot *P'*, the image of *P*, and state its coordinates.

Rotate point <i>P</i> 90° about the origin.	Rotate point <i>P</i> 180°	Rotate point <i>P</i> 270°	Rotate point <i>P</i> 360°
	about the origin.	about the origin.	about the origin.
<i>y</i>	<i>y</i>	<i>y</i>	<i>y</i>
<i>P</i> (4,2)	<i>P</i> (4,2)	<i>P</i> (4,2)	<i>P</i> (4,2)
Coordinates of P'	Coordinates of P'	Coordinates of P'	Coordinates of P'

Based on your findings above, come up with rules for each of the rotations

$$\begin{aligned} R_{0,90^{\circ}} &: (x, y) \to (,) \\ R_{0,180^{\circ}} &: (x, y) \to (,) \\ R_{0,270^{\circ}} &: (x, y) \to (,) \\ R_{0,360^{\circ}} &: (x, y) \to (,) \end{aligned}$$

Summary of the Rules:

 $R_{0,90^{\circ}} : (x, y) \to (-y, x)$ $R_{0,180^{\circ}} : (x, y) \to (-x, -y)$ $R_{0,270^{\circ}} : (x, y) \to (y, -x)$ $R_{0,360^{\circ}} : (x, y) \to (x, y)$

- 1. State the image of point *P*(-2,7) after each rotation:
 - a. R_{90°}
 - b. R_{270°}
 - c. *R*_{−90°}
 - d. R_{180°}
 - e. R_{360°}
 - f. *R*_{-180°}
- 2. If *R*(5, 2) is rotated counterclockwise 90° about the origin, its image will be ______.
- 3. What are the coordinates of M', the image of M(2, 4), after a counterclockwise rotation of 180° about the origin?
- 4. What are the coordinates of *P*', the image of *P*(-3, 5), after a counterclockwise rotation of 270° about the origin?
- 5. The transformation $R_{0,90^{\circ}}$ maps the point (5, 3) onto a point whose coordinates are

 1) (5, -3)
 2) (3, -5)
 3) (3, 5)
 4(-3, 5)
- 6. What's the image of point (-3, -6) under a clockwise rotation of 90° ($R_{0,-90^{\circ}}$) about the origin?
- 7. What are the coordinates of A', the image of A(3, -4), after a rotation of 180° about the origin.

8.	Sta	State each rotation as an equivalent <i>positive</i> rotation						
	a)	-90°	b) -180°	c) −270°	d) clockwise rotation of 90°			